A case of invasive mucinous adenocarcinoma of the lung showing stepwise progression at the primary site

Hitomi Kawaia,b,1, Masato Sugano c,1, Noriyuki Nakano d, Masafumi Muratani e, Shingo Sakashita f, Yukinobu Goto g, Masayuki Noguchi b,h,⁎

Department of Pathology, University of Tsukuba Hospital, Ibaraki, Japan
b Department of Pathology, National Cancer Center Hospital East, Chiba, Japan
c Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
d Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
e Department of Pathology, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
f Department of Thoracic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
h Department of Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan

ARTICLE INFO

Keywords:
Invasive mucinous adenocarcinoma (IMA)
Stepwise progression
KRAS mutation
TP53 mutation

ABSTRACT

Objective: Invasive mucinous adenocarcinoma (IMA) is a variant of lung adenocarcinoma. We present one case of IMA with mixed mucinous and non-mucinous components, suggesting stepwise progression within the tumor.

Material and method: The two different components of IMA were separately examined by immunohistochemistry and performed amplicon sequencing (Ion Ampliseq Cancer Hotspot Panel v2, illumina, San Diego, CA).

Result: Macroscopically, the IMA contained a small and well demarcated solid part. Tumor cells in the main part showed abundant intracytoplasmic mucin, whereas those in the solid part showed scant intracytoplasmic mucin and high-grade nuclear atypia. Both parts harbored the same KRAS mutation.

Conclusion: Oncogenetic TP53 mutation might promote stepwise progression of this case of IMA.

1. Introduction

Invasive mucinous adenocarcinoma (IMA) is a variant of lung adenocarcinoma [1]. The tumor cells in IMA are columnar and contain abundant intracytoplasmic mucin, mimicking goblet cells of the colon [1]. IMA is often positive for HNF4-alpha, but negative for TTF-1 [1]. IMA reveals genetic abnormalities similar to those of colorectal carcinoma and commonly shows KRAS mutation (in up to 90% of cases) [1,2].

Many pathological investigations have suggested that lung adenocarcinoma shows stepwise progression from atypical adenomatous hyperplasia, through adenocarcinoma in situ to minimally invasive adenocarcinoma. The majority of non-mucinous, TTF-1-positive and HNF4-alpha-negative adenocarcinomas follow this stepwise progression, but mucinous adenocarcinomas are relatively rare and the concept of stepwise progression in these tumors is still debatable [3,4]. On the other hand, some IMAs have non-mucinous component to some extent [6–8], and these have been described as mixed IMA [6] or mixed mucinous/non-mucinous adenocarcinoma [5,7]. However, those reports have not provided details about the morphological distributions of the mucinous and non-mucinous components. Recently, Kadota et al. reported that pure IMAs tended to harbor KRAS mutation more frequently than mixed IMAs [4], but the role of KRAS mutation in IMAs has not been fully elucidated.

We have experienced one case of IMA containing a small, well-demarcated solid part. Histologically, the main part of the tumor was pure mucinous-type IMA, but the solid part consisted of tumor cells with scant intracytoplasmic mucin and high-grade nuclear atypia. We hypothesized that the solid part represented progression from the main part, and examined the two parts using a molecular biological approach. This allowed us to prove that TP53 gene alteration was associated with stepwise progression of this IMA.
2. Clinical summary

An 82-year-old Japanese man visited the University of Tsukuba Hospital because of increased sputum production. A nodule with ground glass opacity was detected in the lower lobe of the right lung by computed tomography (CT). He had been diagnosed as having mucinous adenocarcinoma of the lung by CT-guided biopsy at the previous hospital. He underwent lobectomy of the right lower lobe four months later (Fig. 1a and b).

At the time of admission, sigmoid colon cancer had also been detected, and he underwent sigmoidectomy one month before the lobectomy (pT3N0, pStage II, UICC 8th edition) (Fig. 1c).

No recurrence or distant metastasis of either tumor was detected during postoperative follow-up (six months).

3. Pathological findings

Gross examination demonstrated an ill-demarcated and glossy tumor extending from the hilum to the peripheral lung (S8 and 9 segments) (Fig. 1a). The tumor measured 8.5 x 7.5 x 3.5 cm and included a small, well-demarcated solid part measuring 1.5 x 1.0 cm (Fig. 1b). On microscopic examination, the tumor cells showed lepidic, papillary and acinar growth (Fig. 1d). In the solid part, tumor cells showed a cribriform structure and had large nucleus (Fig. 1e). They showed less intracytoplasmic mucin than those in main part (Alcian-blue stain) in the small area surrounding the solid part, tumor cells intermediate in form between the main and solid parts were evident, showing a slight amount of intracytoplasmic mucin and mild nuclear atypia.

The tumor cells of the sigmoid colon cancer were very similar to those in the solid part of the lung cancer (Fig. 1f), so the latter were thought to represent intratumoral metastasis from the sigmoid colon cancer or partial progression of the main part. We analyzed tumor tissues from the three areas (sigmoid colon cancer and the two components of the lung cancer) immunohistochemically. Tumor cells in the main part were TTF-1(-), HNF4-alpha(+), CDX2(-), p53(-). Although tumor cells in the solid part were TTF-1(-) and HNF4-alpha(+), similar to the main part, they were CDX2(+) and p53(+). On the other hand, tumor cells in the sigmoid colon cancer were TTF-1(+), HNF4-alpha(+), p53(+) and CDX2(+) (Fig. 2a–f). We then examined KRAS mutation at codon 12 and 13 using PCR (SRL, Tokyo, Japan). KRAS p.G12V mutation was detected in both components of the lung cancer, whereas KRAS p.G12D mutation was detected in the sigmoid colon cancer. On the basis of these results, the lung cancer was diagnosed as invasive mucinous adenocarcinoma (IMA), pT4aN0, pStage IIIA (UICC: 8th edition).

In order to examine in detail the molecular biological features of the two different IMA components, we performed amplicon sequencing using Ion Ampliseq Cancer Hotspot Panel v2 (illumina, San Diego, CA). Each DNA was extracted from formalin-fixed, paraffin-embedded (FFPE) samples from the two IMA parts separately after macrodissection. We collected mutations whose allele frequency (AF) was over 10%. KRAS p.G12V and TP53 p.P72A mutation was commonly observed in both components of the lung cancer. However, KRAS p.G12D mutation was observed only in the sigmoid colon cancer.
detected in both the main and the solid part, but TP53 p.P278L mutation was detected only in the solid part. TP53 p.P72A mutation was also detected in non-tumorous tissue of this patient.

4. Discussion

This 82-year-old Japanese man had two synchronous malignancies, sigmoid colon adenocarcinoma and lung IMA, for which he had undergone two consecutive operations. In the IMA, we detected one small well demarcated lesion showing histological and immunohistochemical characteristics similar to those of sigmoid colon cancer. We suspected that this solid part represented tumor-to-tumor metastasis from the sigmoid colon cancer, or stepwise progression of the IMA.

In order to clarify this issue, we examined KRAS mutation in the sigmoid colon cancer and the two components of the IMA, since colon cancer and IMA frequently contain KRAS mutation and its status was thought to be informative for clarifying the nature of the tumor parts. Interestingly, the same KRAS p.G12V mutation was detected in both parts of the IMA, but a different mutation (p.G12D) was detected in the sigmoid colon cancer. Therefore, we concluded that the solid part of the IMA was not metastasis from colon adenocarcinoma, but rather represented focal progression of the IMA.

In order to analyze the tumor mutation characteristics, we analyzed both two components of the IMA by amplicon sequencing. The result indicated that tumor cells in both parts harbored the similar KRAS p.G12V mutation and TP53 p.P72A mutation. The clinical significance of TP53 (p.P72A) mutation is not known in the Clinvar databases (ID: 12351). This mutation was also detected in non-tumorous tissue, so it could be SNIP and not related to stepwise progression. Interestingly, only tumor cells in the solid part had TP53 p.P278L mutation, which is known to be oncogenic in the Clinvar databases (ID: 232497) and in previous reports [9,10]. Morphologically, tumor cells in the solid part showed reduced mucin and high grade nuclear atypia, indicating dedifferentiation. These results indicated that the tumor cells acquired TP53 p.P278L mutation in the main part of the IMA as it progressed and formed the solid part.

When discussing the pathological definition of IMA, the proportion of goblet-type tumor cells is still a debatable issue: some cases show a pure mucinous pattern, whereas others have a non-mucinous component [3–7]. The ratio of mucinous/non-mucinous components has differed among reports, and the relationship between the two components was not been well investigated. Genetically, the proportion of TP53 mutation in IMA has also different among reports. Boland et al. reported that two of 42 IMAs (5%) had TP53 mutation, and that KRAS and TP53 mutation were exclusive [5]. Shim et al. reported that one of 27 KRAS wild-type IMAs (5%) showed TP53 p.R273C mutation [10]. However, neither of these reports referred to the non-mucinous component. Rhigi et al. and Hwang et al. reported that 24 of 52 (46%) and five of 21 (24%) cases of mucinous adenocarcinoma of the lung showed TP53 mutation by next-generation sequencing [6,7]. These two reports examined not only pure IMA but also mixed IMA (containing a non-mucinous component) and adenocarcinoma with mucinous features.

The present case appears to be very informative when considering the definition and progression of IMA, suggesting that pure goblet cell-
type IMA can progress to scant-mucinous adenocarcinoma and that TP53 mutation might be a factor involved in such progression. Further investigations are required using more cases in order to confirm the biological significance of TP53 mutation in IMA.

5. Conclusion

We have presented a case of IMA in which stepwise progression in the primary site appeared to have occurred. The tumor cells showing stepwise progression had scant intracytoplasmic mucin and high-grade nuclear atypia, and contained oncogenic TP53 mutation.

Compliance with ethical standards

The study followed the ethical declaration of Helsinki.

Declaration of Competing Interest

The authors declare that they have no conflict of interest.

References


